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Subcritically stable motion of long gravity waves of finite amplitude in a liquid 
layer flowing down an inclined plane is shown to be impossible. However, super- 
critically stable wave regimes for such flows are found and curves of constant 
wave amplitude in such regimes are obtained. The mechanism of non-linear 
stability is investigated by considering the energy transfer between the mean 
flow and the disturbances. The results obtained show that the mechanism of 
stability in a parallel flow with a free surface is quite different from that in a 
parallel flow without a free surface. 

1. Introduction 
In  a previous paper (henceforth referred to as [I]) Lin (1969) obtained a 

closed form solution to the problem of finite amplitude stability of a liquid layer 
flowing down an inclined plane. It was shown that in the neighbourhood of the 
neutral curve obtained by Benjamin (1957) and Yih (1963), an exponentially 
growing infinitesimal disturbance may develop into supercritically stable wave 
motion of small but finite amplitude observed by Kapitza (1949) and Binnie 
(1957). However, it  was not obvious from the obtained closed form solution 
whether such a film flow will exhibit subcritical instability. Nor could the limit 
of supercritically stable wave motion be readily revealed from the complicated 
expression for the second Landau coefficient. In  the present paper, numerical 
computations have been carried out to determine such a limit for falling liquid 
films of different angles of inclination and surface tensions. In  supercritically 
stable rkgimes, curves of constant wave amplitude have been obtained. The 
numerical results also show that all small but finite disturbances are damped in 
subcritical regions. Following the line of Stuart’s (1960) analysis, the mechanism 
of non-linear stability is investigated from the point of view of energy transfer 
between the mean flow and disturbances. The results of analysis are then com- 
pared with Reynolds & Potter’s (1967) results for a parallel flow without a free 
surface. The comparison shows striking differences between these two cases. 
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2. Supercritical wave motion 
Stuart (1960) has derived from the Navier-Stokes equation the following 

expression which governs the non-linear growth of a periodic finite disturbance 
in a parallel flow without a free surface 

where A is the disturbance amplitude, a the wave-number, the often called 
Landau's second coefjficient and c, is the imaginary part of the eigenvalue ob- 
tained in the linearized stability theory. It will be shown in the next section that 
the above equation still governs the growth of disturbances in a parallel flow with 
a free surface. in the above equation, being defined as ac?], is given by equation 
(32) in [I] and ci is given by Benjamin (1957) and Yih (1963) to be 

%&ere /3 is the angle of inclination of the plane, R the Reynolds number and v 
a surface tension parameter defined respectively by 

with X = TIpdDiand aa = gd2sinp/3v. In  the above equations, Da is the average 
velocity in the film flow, v the kinematic viscosity, T the surface tension, p the 
density of the liquid, g the gravitational acceleration and d is the thickness of the 
film. For given values of CT and p, neutral curves along which civanishes have been 
calculated from (2) and are plotted in figures 1 and 2. Each of these neutral 
curves divides the a, R plane into two regions. c, is positive in the region below 
each neutral curve and is negative in the rest of the a, R plane. In  the very near 
vicinity of neutral curves, the first term on the right side of (1) dominates and 
disturbances will grow or decay exponentially according to whether ci > 0 or 
c, < 0. However, this amplitude will immediately make the second term on the 
right side of ( 1 )  significant, and consequently the sign of ar21 plays an important 
role in the non-linear development of the initial disturbance. Curves along which 
at21 vanishes are calculated from (32) given in [I] and are plotted in figures 1 
and 2.  a[2l is positive below each of these curves and is negative in the rest of 
the a,R plane. (The symbol Q appearing in (32) was not given in [I] and 
should be defined as Q = 3 cot p/R + a2S.) Figures 1 and 2 show, at least for 
calculated values of (+ and p, that is negative in the region of negative c,. 
It follows from ( 1 )  that no subcritically stable wave motion is possible since 
all finite but small disturbances of long wavelength are damped in the region of 
ci < 0. On the other hand, d2] < 0 and c, > 0 in the region defined by each pair 
of neutral curves and curves of zero Landau second coefficient as shown in 
figures 1 and 2. Thus, within this region a supercritically stable wave motion is 
possible for given values of p and CT. In  these wave rkgimes, curves of constant 
amplitude are calculated from (1) .  It is observed that R in (l) ,  with a[21 given by 
(32) in [I], appears only in forms of products aR and RS. This allows us to assign 
values of A ,  CT and a in (1) and then solve the resulting equation in aR by Newton- 
Raphson iteration. Having obtained crR for which dA2/dt = 0 for given A ,  
a and Q, we can obtain the corresponding R by a simple division. The results 

ci = ~ [ 6 R / 5 -  (cotp+az,/3)], (2) 

R = oaaiv, = RS 
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are plotted in figures 3 to 5. Some typical results are also given in table 1. If 
the degree of stability is defined as the increment in the Reynolds number for a 
given increment in the wave amplitude, then figures 3 to 5 show that for ex- 
tremely long waves the degree of stability is very small. As we reduce the wave- 
length slightly, the degree of stability is seen to increase rapidly until it reaches 
the maximum. If the wavelength is reduced further, the same figures show a 
gradual decrease in the degree of stability. It is clear that there is a maximum 
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FIGURE 1. Stability curves, p = 90" : __ , 
c .  % ,  = 0. - - - -,d21 = 0; the numbers ap- 
pearing in the figure arc the values of c. 

FIGURE 2. Stability curves, p = 30"; -, 
ci = 0 ;  - - - = 0; the numbers ap- 
pearing in the figure are the values of CT. 

of arafor a given A in the range of 01 of interest. However, it is not clear what causes 
this peculiar phenomenon. For each curve of constant wave amplitude shown 
in figures 3-5, corresponding values of wave speed have also been calculated 
from (35) and (33) in [I]. Some of the representative results are given together 
with other relevant results in table 1. Figure 6 shows the dependence of wave 
speed on the amplitude and wavelength. For a given wave amplitude, the wave 
speed seems to increase with the wavelength. For a given wavelength, the wave 
speed is seen to increase with amplitude. Thus, the supercritically stable waves 
we have found seem to possess the characteristics of finite amplitude gravity 
waves (Stokes 1847) rather than capillary waves the speed of which is known 
t o  decrease as the amplitude increases (Crapper 1957). In  order to gain a better 
understanding of the roles of surface tension, viscosity and gravitational poten- 
tial in the non-linear stability which is indicated by the above computational 
study, we shall consider the energy transfer between the mean flow and distur- 
bances in a falling liquid layer. 
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FIGURE 3. Supercritically stable wave r6- 
gime, p = 90°, d = 1850.0. 0, Binnie's ex- 
periment, a! = 0.0615, R = 4.4. The value 
of wave amplitude is given on the right of 
each curve. 
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FIGURE 5. Supercritically stable wave r6- 
gime, p = 30°, CT = 322.0. The value of con- 
stant amplitude is given on the right of each 
curve. 
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FIGURE 4. Supercritically stable wave r6- 
gime, /J' = 90", CT = 322.0. 0, Kapitza's ex- 
periment, LY = 0.144, R = 3.35, A = 0.17. 
The value of wave amplitude is given on 
the right of each curve. 
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FIGURE 6. Dependence of wave speed on 
the amplitude and wavelength. The numbers 
appear in the figure are wave-numbers. 
/3 = 90°, CT = 322.0. 
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a: R C kl k2 k8 2aL2* ci 

0.0200 0.2477 5.9816 - 0.0000 4.9241 - 4.9817 - 0.0576 0.0052 
0'0250 0.3838 4.8929 - 0.0000 1.6096 - 1.7463 - 0.1367 0.0098 
0.0300 0.5435 4.2960 - 0.0000 0.6356 -0'9138 - 0.2782 0.0167 
0.0350 0.7194 3.9311 - 0.0000 - 0.6239 0.1255 - 0.4984 0.0256 
0.0370 0.7929 3.8237 - 0.0000 - 2~2182 1.6060 - 0.6121 0.0298 
0.0400 0.8995 3.6895 - 0.0000 - 2'8025 1.9956 - 04069 0.0363 
0.0450 1.0648 3.5176 - 0.0000 - 3.9958 2.8022 - 1.1936 0.0477 
0.0600 1.2963 3.2003 - 0.0000 - 7.5042 5.1658 - 2.3383 0.0702 
0'0800 1.0934 3.0446 - 0.0000 - 6.4129 4.1896 - 2.2233 0.0500 
0.1000 1.1758 3.0135 -O*OOOO -4.4505 2.5749 - 1.8756 0.0338 
0.1200 1.4584 3'0039 - 0.0000 - 3.3320 1.6962 - 1.6358 0.0245 
0.1400 1.8675 3.0004 -0.0000 -2.6549 1.1596 - 1.4953 0.0192 
0.1600 2.3767 3.0000 -0.0000 -2.2136 0.7293 - 1.4843 0.0167 
0.1800 2'9728 3.0017 -0.0000 - 1.9115 0.2940 - 1.6176 0.0162 

TABLE 1. Typical results. /3 = go", r = 332-0, A = 0.06. 

3. Mechanism of non-linear stability 

of [I]). The governing equation of motion is 
Consider a layer of liquid flowing down an inclined plane y = 1 (cf. figure 1 

(3) 
1 2 + [ (Vo + V,) grad] (Vo + V,) = - gradp, + V2V1, 

where Vo is the velocity field of the unperturbed flow, V, the velocity disturbance 
and p ,  is the pressure disturbance. If we split the disturbances in (3) into three 
parts as 

where the superscript O denotes the non-harmonic part of the disturbance and 
prime or double prime denotes the harmonic disturbances of odd or even order, 
and we then form dot products of all terms in (3) with V' and then integrate 
from the free surface y = ~ ( x ,  t) to the plane y = 1 over a wavelength, we have 

v, = VO+"+V", p ,  =pO+p'+p", 

where superscripts O, prime and double prime have the same representation as 
before and u or v are used to stand for the x and y components of the velocity 
disturbances. ?i in (4) is the distorted mean flow consisting of the primary flow 
and the x component of the non-harmonic part of the velocity disturbances. 
Equation (4) states that the time rate of change of kinetic energy in odd dis- 
turbancesis equal to therateof energy transfer from the mean flow to odd distur- 
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baiices less the rate of work done by the normal stress to deform the free surface, 
less the rate of energy dissipation through viscosity, less the energy transfer 
between odd and even disturbances which is given by the last three integrals 
in (4). If the free surface is replaced by a rigid plane, the second and the last 
integrals in (4) with integrands being evaluated at 7 = 0 will vanish, and thus 
Stuart’s (1956) result is recovered. It will be seen shortly that the presence of a 
free surface leads to a significant modification on the mechanism of non-linear 
stability. Substituting the expressions for the velocity and pressure disturbances 
given in [I] into (4)) we have, after some algebraic manipulation, 

dA2 
at [ 1 + O(A2) ] ~ = 2ac,A2 + (k, + k2 + k3)A4 + O(A6), (5) 

where 

with 

In the above expressions prime denotes differentiation with respect to y and 4’s 
are functions of y already obtained in [I]. From the above development, the 
mechanism of non-linear stability may be seen to involve the following three 
competing processes: (u) distortion of the mean flow by the Reynolds stress 
apparent in k,; ( b )  generation of higher harmonics or amplification of the funda- 
mental through Reynolds stresses depending on whether k,  < 0 or k, > 0; 
(c) redistribution of the fundamental harmonic arising from (i) energy dissipation 
through viscosity, (ii) free surface deformation by the normal stress and (iii) the 
energy transfer from the mean flow to the fundamental; all given in k,. 

For each curve of constant wave amplitude given in figures 3 to 5, correspond- 
ing values of k,, k, and k, have been calculated from the above equations by the 
method of numerical quadrature (Ralton & Wilf 1967). Some of the representative 
results are given in table 1. k, is found to be negative but extremely small com- 
pared with k, or k,. Thus, process (a) mentioned above is insignificant, although 
it is a stablizing process in the non-linear development of long gravity waves. 
This situation is quite different from that in a parallel flow without a free surface 
studied by Reynolds & Potter (1967). Their calculations show that distortion of 
the mean flow is an effective process of stabilizing short shear waves. The numeri- 
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cal results we obtained (cf. table 1) also show that k, is positive for very small 
values of a. This implies that for extremely long waves, energy can actually be 
transferred from higher harmonics to the fundamental, an instability mech- 
anism which was not found in shear waves. For relatively short gravity waves, 
however, ic, are allnegative which implies that energy can only be transferred from 
the fundamental t o  generate higher harmonics; this is the same stability mech- 
anism conjectured by Stuart (1960) and confirmed by Reynolds & Potter (1967) 
for short shear waves in a parallel flow without a free surface. Turning to the 
sign of k,, we found that for very long waves k, is negative due to the large rate of 
work done by the normal stress to deform the free surface. For relatively short 
waves all calculated values of k, are positive and then process (c) is destablizing. 
Along each curve of constant amplitude in figures 3 to 5, the sum of k,, k ,  and k, 
is negative. For the portion of such a curve where a is sufficiently small process 
(c) dominates, and for the rest of the curve process (b) dominates. 

Finally, the supercritically stable wave regimes shown in figure 1 and 2 are 
seen to rotate about the bifurcation point in a clockwise direction as the surface 
tension is increased. Clearly, this indicates that the surface tension has the sole 
role of stablizing the flow. Moreover, both neutral curves and curves of zero 
Landau second coefficient do not form a loop as they do in parallel shear 
flows. It follows that within the flow regime considered viscosity has only one 
role of stabilizing film flows through viscous dissipation. 

4. Conclusion 
A parallel flow with a free surface does not exhibit subcritical instability. Nor 

could it sustain a subcritically stable wave motion. All two-dimensional long 
gravity waves of finite but small amplitudes are damped in the subcritical region 
in the a, R plane. Supercritically stable wave regimes are found. For very long 
gravity waves, non-linear stability is found to be due to the large rate of work 
done by the normal stress to deform the free surface. For relatively short gravity 
waves, however, the stability is shown to be mainly due to the generation of 
higher harmonics which leads to the distortion of the wave form. Unlike the 
situation in parallel shear flows, the mechanism of non-linear stability by dis- 
tortion of the mean flow through Reynolds stresses is found to be negligibly small. 
It should be pointed out that the above conclusion is valid only for long gravity 
waves. The non-linear stability mechanism for short capillary waves is likely 
to be more complicated due to the possibility of competition between gravity 
waves and shear waves for instability (Lin 1967). 
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